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Accelerated life tests that maximise Shannon information 

BY NICK POLSON, NOZER SINGPURWALLA AND ISABELLA VERDINELLI
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ABSTRACT 

The current literature on accelerated life tests emphasizes issues of inference and extrapolation 

under a given design, rather than the optimal design of an accelerated test. In this expository paper, 

we outline a framework for a coherent approach for the conduct of accelerated tests. Our approach 

is based on the Bayesian paradigm for experimental designs under linear models and involves the 

specification of a utility function. For the latter we adopt Shannon Information between predictive 

densities. The optimal design is then selected via the principle of maximum expected utility. We 

illustrate the approach with some special cases. 

Key words and phrases.   Bayesian Methods, Biometry, Kullback-Leibler Distance, Linear 

Models, Clinical Trials, Dose Response Experiments, Overstress Tests, Power Law, Reliability. 
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1     Introduction 

Let Si, 52,..., be a collection of environmental conditions (stresses in engineering, doses in biome- 

try) at which, it is possible to conduct life tests, and suppose that 5i ■< S2 < ■ ■ ■ , where "'S, -< 5;" 

denotes the fact that Sj is judged to be more severe than 5,-. Let Su < S\, denote an environmental 

condition at which it may or may not be possible to conduct a life test; Su will be referred to as the 

use conditions environment. Let X, denote the life length of an item under St-, and suppose that 

whenever 5,- -< Sj, X, >st X:, where "X >ai Y" denotes the fact that P(X > x) > P{Y > x) for 

all x > 0. Suppose X, is assessed to have distribution F,(- | 0,-), where 0, is a vector of unknown 

parameters. It is typical [Mann, Schäfer and Singpurwalla (1974)] to let F,-(- | 0,) = F(- | 0,), for 

all i, and to assume that F is a commonly used distribution function in life testing, such as an 

exponential, a gamma, a lognormal or a Weibull. 

The term "accelerated test" refers to the fact that the conditions under which testing is done 

are more severe than those under which the item is intended to be used, so that the failure time 

of an item is shortened. The dual scenario, namely testing under conditions less severe than use 

conditions, has received less attention because the two are conceptually equivalent. The aim of 

accelerated testing is to facilitate an early inference about Xu bearing in mind the requirement 

that Xu >st X\. To accomplish the above, one embarks on an experiment, called an accelerated 

life test, and makes some assumptions which facilitate an analysis of the data from the experiment. 

Of the assumptions that are made, a key one is the time transformation function, whose aim 

is to relate 0,- and 5t, i = 1,2,...,. The design of an accelerated life test calls for a specification of 

several quantities, namely the k levels of testing, say S\, < S2 < ■ ■ ■ < Sk, k > 1, n,-, the number of 

items to be tested under 5t, r,, the number of failures to be observed under 5,-, and/or T%, the time 

of termination of the life test under 5,-. Clearly, if Xij denotes the time to failure of the j'-th item 



under 5,, then X<: < T„ I = 1 k, and j = 1,..., rt- < n,-. Other protocols for the design would 

involve a combination of the above, such as testing until min(Ii,-Y,r,)> or testing under Si for a 

duration T,, and then continuing to test the unfailed items under S.+i for a duration Tt+i, and so 

on. The latter tests are called step-stress tests [Shaked and Singpurwalla (1983), DeGroot and 

Goel (1979)], and will not be the topic of discussion here. 

To date, much of the statistical literature on accelerated life testing has focussed on issues of 

inference about Xu given an accelerated life testing protocol, rather than the more encompassing 

problem of designing an optimal protocol; see, for example, Meinhold and Singpurwalla (1987), 

Blackwell and Singpurwalla (1988) for recent bibliographic citations. The few published papers 

which address the question of design appear to lack a sound foundation and consequently fail to 

recognize the important role played by the time transformation function in developing an optimal 

design. The aim of this paper is to prescribe a framework for the coherent conduct of an accelerated 

life test. Specifically, what is needed is a paradigm for specifying a choice of k and the associated 

stress levels S\,...,Sk, the number of items to be tested 7Zi,...,nfc, the test truncation times 

Tx,T2,...,Tk, and the censoring values 7"i,...,rfc. Subsequent work along these lines would also 

involve a design of the "testing pattern" for step-stress tests. 

Note that testing under a very severe environmental condition, say Sk+i, where Sk ■< Sk+i, 

could make the realizations of Xk+u degenerate at 0. That is, what would be observed under 

Sk+i are instantaneous failures. The recording of instantaneous failures occurs because of a finite 

resolution of the recording device, and should not be interpreted as Xjt+i» = 0. Thus, in what 

follows, Sk is chosen to be the most severe environmental condition for which the realizations of 

Xk» are not identically zero. 



2 OVERVIEW 

The statistical model, which includes a choice of the parametric family of distributions for F and 

also a choice of the time transformation function is described in Section 3. A discussion of some 

consequences of the above choices is also included in Section 3. Section 4 describes the main 

contribution of the paper, namely the development of a paradigm for the conduct of an optimal 

accelerated life test under the statistical model of Section 3. It turns out that whereas a prescription 

of the needed paradigm can, in principle, be formulated in an appealing manner - via Shannon's 

measure of information - progress towards its implementation calls for a consideration of simplifying 

scenarios and special cases. A simplifying scenario is outlined in Section 4, and a consideration 

of some special cases given in Section 5. These indicate the flavour of the approach and provide 

insights about the more general situations - insights which are otherwise counter intuitive. The 

hope here is that continued activities along the suggested lines will lead to developments which will 

contribute towards the generation of a comprehensive package of coherent techniques which will 

help address the practical issues raised by this important problem. These and other such matters 

constitute Section 6, which concludes the paper. 

3 THE STATISTICAL MODEL 

Suppose that XtJ is lognormal with parameters pn and erf, for 1 < i < k, and 1 < j < r,-. 

This assumption is not atypical in life testing; furthermore, it facilitates connection with the well 

developed Bayesian theory of linear normal models. For the time transformation function, the 

Power Law, popular in both biometry and reliability [Sethuraman and Singpurwalla (1982)] is 

assumed. Under this law. two versions of the time transformation function appear to be reasonable, 

one in terms of E(Xtj), and the other in terms of A/(X,j), the median of Xij.   Specifically, for 



unknown constants C > 0 and P > 0, it is assumed that 

<-?.    c (1) E(Xij) = exp(/i,- + "2") = 5?' 

or that 

M(XtJ) = exp(/it) = jp, (2) 

If Yij = logX,-j, then AY,- having a lognormal distribution with parameters /z,- and of - henceforth 

written as "XtJ ~ \(ta,a?)" - implies that Y,_,- is normal with mean Hi and variance cr2 - henceforth 

written as •%■ ~ N(m,<T?y. As a model of observations, it is common to suppose that 

YJ,- = m + dj, where €tj ~ iV(0, a,2); (3) 

then, letting a = logC,b =  -P,V; = log5; and taking logarithms in (1) and (2), the above 

relationships may be re-written, under (1), as 

2 

Yi^a + bVi-^ + eij, (4) 

and 

Yij = a + bVi + etj , (5) 

under (2). It is instructive to note that under (4) the model of observations for the actual life lengths 

takes the form Xtj = E(Xij)eijt and under (5) the form X{j = M(A\-■,)€,;, where etj = exp(«,-,•); 

that is iij ~ A(0, of). Such relationships imply that an observed life length is its mean (median) 

multiplied by an innovation from lognormal distribution with median 1 and mean exp(o,/2). Fur- 

thermore, when o2 is assumed and r,- = n,- for all z known, the relationships (4) and (5) imply 



that the response vector Y, where Y = (Yu,..., Fin, I21,..., i^nj» • • •- Yki, ■ ■ ■. YknkY 1 has the 

structure of a linear model of the form 

Y = Aß + e, (6) 

where, e ~ iV(0, 2),/3   = (a,b). The design matrix, A, is given by 

Ar = 
1...1 1...1 

VA...VX   v2...v2 

"1 

and £ is the specified covariance matrix 

n2 

1...1 

Vk...Vk 

n* 

v — 

a\    7m 

^2^2 

°llnk 

where /„. is the Uj x rij identity matrix. 

Since E is assumed known, there are several strategies that could be used to facilitate a speci- 

fication of the af, all consistent with the physical aspects of the life testing scenario. In particular, 

it is reasonable to expect that af decreases with 5,-, so that a2 > a\ > ... > a2. With regard to 

the above, several possibilities come to mind, one of which is that of = K/Si, where K is specified, 

or that <7t- = cr2/i, where a2 is specified. 



In view of the above considerations and (6), it follows that 

(Y|A,/3,£)~iV(A/3,£). (7) 

A final ingredient that remains to be specified is a prior assumption for the vector ß. For this, it 

is reasonable to assume that 

(/3|/30,E0)~iV(/30,£o), (8) 

where 

ßo = (GO,M, and E0 

&ab 

are specified. In cases where P is close to zero and P > 0, the assumption that b = —P is normally 

distributed may be disturbing. A strategy for overcoming this in this scenario is to make a\ very 

small. 

A generalization of (8) would involve a distributional assumption on ß0 leading to the hierar- 

chical model of Lindley and Smith (1972). Such a generalization would be prompted by concerns 

about the validity of the power law as a time transformation function, or about the appropriateness 

of the time transformation function over the entire range of stresses; see for example, Blackwell 

and Singpurwalla (1988). For the purposes of this paper we proceed with assumption (8). 

It is well known [Lindley and Smith (1972)], that under (7) and (8), the posterior distribution 

of ß, given the data y obtained under A, is of the form 

(ß\y,A,L,ß0,E0)~ N(Dd,D), (9) 



where 

D = (ATE~lA + Eg 1)"1 and d = (ATE-1y + £Q ^o)- 

Here y is a realization of Y and is obtained by replacing each Y{j in Y by its realization y,7-. The 

use of (9) in designing an optimal accelerated test is explicated in the next section. 

4    DESIGN OF AN OPTIMAL TEST 

It was stated that the aim of accelerated testing is to facilitate inference about Yu  = logX„. 

Variables which control the quality of inference are the design matrix A, the censoring values 

ri rjt, and the test truncation times rj...,^.    Factors which dictate choices of the above 

variables are the costs of testing - where costs would include the time spent waiting for the results 

of the test. Optimal choices of the design variables would involve a trade-off between the costs 

of testing and the quality of the inference. Thus for example, testing at Vu itself (or as close to 

it as is possible) would not only be time consuming but would also result in data with a large 

variability; testing as far away from Vu as is possible would be expeditious and produce data with 

small variability. However, testing at very large values away from Vu could result in recording and 

instantaneous failure of all items on test, providing little, if any, information about Yu. Advantages 

of testing in the vicinity of Vu are a savings in costs due to the non-failure of some of the items on 

test, and the knowledge that the observed data are likely to be more representative of the actual life 

lengths under Vu, than data that would be obtained when testing away from Vu. This latter issue 

would be germane if there were concerns associated with the validity of the time transformation 

function over the range of stresses considered. The set-up of Section 3 assumes that the power 

law is operative over the entire range of values of the stresses, and this diminishes the sense of the 

above argument for testing in the vicinity of Vu. 



4.1 Consideration of a Simplifying Scenario 

In many scientific experiments, particularly those involving biomedical scenarios, the cost of testing 

is either secondary, as compared with the quality of inference, or is the same at all test levels; thus in 

what follows the costs of testing will not be considered. Furthermore, for the purpose of illustration, 

it will be assumed that r,- = n,-, and that the r,'s are infinite for all :. These assumptions imply 

no form of censoring and truncation, leaving an optimal choice of the design matrix A as the only 

decision variable. It will be shown in Section 4.3 that an optimal choice of A is facilitated by 

a consideration of the expected gain in Shannon information, for which the prior and posterior 

predictive distributions of Yu are the essential ingredients. 

4.2 The Predictive Distributions 

Under the model of Section 3, it is clear that 

{Yu\Vu,alß)~ N([lVu]ß,cl), 

and we require the following predictive distributions; Yu\Vu,a^,ß0,Ho and Yu\Vu,al, S,y,/30, £<> 

It can be shown that 

/ 

(Yu\Vu,*lß0,'Z0)~N [1K]/30,[1FU]SO 

V 

1 
\ 

+ < (12) 

and that 
/ 

(Yu\Vu,<Tl,ß0,£o,i:,y)~N [1 Vu}Dd, [1 VU)D 

\ 

1 
+ < (13) 



4.3    The Design Criterion 

The criterion used here to obtain the optimal design is to choose that design matrix A which 

maximizes the expected gain in Shannon information. Lindley (1956) proposed the use of Shannon 

information gain between prior and posterior in the context of Bayesian inference. Stone (1959a) 

explored this further in the content of experimental design. Stone (1959b) discussed its use in 

the Bayes hierarchical modeling framework as a unifying mechanism for previous ad hoc classical 

criteria. Smith and Verdinelli (1980), Kadane and Verdinelli (1990) discuss the application of 

Shannon information within the Bayes hierarchical modelling framework. Whittle (1973) discusses 

computational techniques for the computation of the optimal design. Chaloner and Larntz (1986) 

apply these techniques to nonlinear models. 

Specifically, in our case, one needs to maximize, with respect to A, the quantity 

Eyjp(y^\y)^(^f)dyu, (14) 

where Ey denotes expectation with respect to the marginal distribution of Y. This marginal 

distribution depends on A,ß0,T,0 and E, and is given [Lindley and Smith (1972)] as 

(Y\ A./30,£0,S)~iV(A/3o,AEoAT + E). (15) 

The integral in (14) is the Kullback-Leibler divergence between the two distributions (12) and (13). 

Note that if Z; ~ N{mi, sf), / = 1,2, then the Kullback-Leibler divergence between the distributions 

of Z\, and Z2 is given by 

1      1,        4\      i 2-2l0gU) + 2 KL(ZuZ2) = ----\og{^) + 
4      (mi -m2f 
„2  + ,2 sl sl 

10 



The mi and Si associated with (12) are 

m, = [1 Vu\ß0 ,s\ = [l VU]E0 

Vu 

+ <?l, 

and these do not depend on y nor on A. However, the m2 and s2 associated with (13) depend on 

both y and and A, respectively, and can be written as 

m2 = [1 Vu][ATi:-lA + Sö1]-1[ATS-1y + X^ßo), 

and 

^[lKH^s-U + Eö1] 
Vu 

+*l 

Substituting the above in (14) results in the need to find that A for which the following expression 

is maximized 

- log t(A, K) + *(A, Vu) + Ey(mj - mj)2. (16) 

where. 

Xv-i ^ _L v-il-i i(A,Fu) = [lK][ArS-1A + E0-1] 

K 
+ *, 

Clearly, an anlytical implementation of the above maximization poses a formidable task. However, 

a simplification of some of the terms in the above results in expressions which facilitate numerical 

computations. Specifically, 

Ey(mi - m2)
2 = Trace < Var(Y)£_1A.D 

1    vu 
DA'S rr-i >, 

11 



where Var(Y) = AEQA   + E from (15). Furthermore, 

iTv-i A'E-'A + Eö -li-i 
ViMi 

EiU 
+ 

&ab 

Tab     oh 

-1 

and the ingredients necessary to obtain AHQA
T
 + E are specified in Section 3. 

It is of interest to note that were inference about ß, rather than Yu, the focus of attention, then 

A would be chosen so as to maximize, see Smith and Verdinelli (1980). 

Var(/3 | Y) \-x= \ ATZ~XA + S0 | , (17) 

rather than the expression (16) given before.  Furthermore if the cost of the testing is an issue of 

concern, then one needs to specify the value of information on a scale comparable with monetary 

units. 

5     CONSIDERATION OF SPECIAL CASES 

The simplest case to consider is the one which involves knowing C, say C = 1, so that <zo = 0. If 

for all i,i = 1,..., Ar, a? = n,- = 1, and <J\ = k = 1, that is only a single unit can be subjected to 

an accelerated test, then the optimal design problem finds the stress at which the item should be 

tested - in the vicinity of Vu, or at V%, the largest stress. For this scenario E = Eo = 1. Algebraic 

manipulation shows that the single item should be tested at Vjt. This conclusion may be contrary 

to intuition, because many, influenced by the notion of a warm feeling, would test in the vicinity 

of Vu. Furthermore, even if more than one item were available for testing, one would test all the 

items at Vjt, and the same would also be true if of were to be decreasing in i. 

In connection with the above, an important question that needs to be addressed is that pertain- 

12 



ing to the number of items that should be tested at V%; that is, how large should njt be? For this, 

one investigates the behavior of (16) - the expected gain in Shannon information - as a function of 

nit, and chooses that value of nt after which (16) shows little or no improvement. For E = So = 1, 

the behavior of (16) as a function of nk, for Vjt = 2, 4, 6 and 8 respectively, and Vu / 0, is shown 

in Figure 5.1. It is interesting to note that the optimum value of njt decreases in Vjt; this is to be 

expected since the variance of the observed life-lengths decreases as the stress increases. 

When P is known, say P = 1, but C unknown, a situation quite common when dealing with 

the fatigue life of ball bearings [Ioannides and Harris (1985)] suggests that a transformation of the 

data would result in a model of the form Yij = a + €,•_,, where Yij = Yij — bVi + -f, under (2) and 

Yij = Yij - bVi, under (5). Clearly, if of decreases in i - as is usually assumed, then one would 

test all the items under stress \\ where the variance of €kj is the smallest. Were of assumed to 

be a constant for all values of i, then it would not matter at which stress the items are tested. 

The above conclusion can also be arrived at by proceeding formally in terms of maximizing (14). 

Finally, the determination of an optimal nk would be based on a plot of the behavior of the utility 

versus n*, similar to that of Figure 5.1. 

When both C and P are unknown - as is often the case - and when only one item is available 

for testing, then under the assumption that E = 1 and Eo = hi it can be shown that the optimum 

stress V* at which testing is to be done is given by that value of V, V say, which attains 

max (- logr(F) + t(V) + (1^\)* J (18) 

where i(V) = y^ ((V - Vu)
2 + 1)) + a\. Interesting, the answer depends on Vu. If Vu = 0 (that 

is, Su = 1), then V* turns out to be Vu. 

In figure 5.2, we show a plot of the expected gain in Shannon information as a function of VJ, 

13 



when Vu = 0. Observe that the expected gain in Shannon information is a monotonically decreasing 

function of VJ implying that when E = 1, it is optimum to test at Vu = 0. 

Suppose now, that in the scenario given above, testing at Vu is not possible and that one could 

test anywhere in the range Vi = 1 through Vk = 6. Suppose the experimenter has two observations 

with one at V = 2. He wishes to choose the position of the second one optimally. In Figure 5.3, 

we show a plot of the expected gain in Shannon information as a function of V)i, the stress for the 

second item. It is interesting to note that testing at Vk = 6 would be preferable to testing at any 

Vi > 1.25, but that testing in the range (1,1.25) is preferable to Vk = 6. 

If £ = a?, where a? known but decreasing in :, then, from (18), the choice V* would be a 

trade-off between the "loss in utility " due to a large variance for testing in the vicinity of Vu, versus 

the "loss in utility" due to our lack of knowledge about C and P which gets emphasized when we 

test away from Vu. 

Our development leads to some interesting conclusions when both C and P are unknown and 

when we are allowed to test 2 items. Under the assumption that £ = S0 = h,ou = 1, Vu = 0 and 

testing is possible at Vu = 0, then the optimum decision would be to test both the items at Vu\ 

however, if testing at Vu were not possible and if Vi = 2 is the weakest stress at which testing could 

be done is V = 2, then the optimum decision would be to test one item at Vi = 2 and the other at 

Vk = 6. Furthermore, if Vi = 1 and Vk = 5, then the optimum decision would be to test both the 

items at Vi = 1, or to test one item at Vi = 1 and the other at Vk = 5, both scenarios giving the 

same Shannon information gain. 

The implication of the above conclusions is that to maximize the expected gain in Shannon 

information, as defined by (14), one should test, if possible, at or in the vicinity of Vu to gain 

direct knowledge about Yu. However, if testing in the vicinity of Vu is not possible, then one should 

gain knowledge about Yu via a knowledge about C and P, and the latter is optimally obtained by 

14 



spreading out the test points as far apart as is possible. It so happens that when Vi = 1 and V* = 5, 

it does not matter how knowledge about Yu is obtained - by direct observation in the vicinity of 

Vu or by knowledge about C and P. 

6    CONCLUSIONS 

It is evident from the material of Section 5 that the development given here enables one to address 

many of the practical issues posed by the problem of designing accelerated tests. The special cases 

of Section 5 have assumed that of is a constant. We have focused on the unknowns in the time 

transformation function. Clearly, an important parameter to learn about is a\ itself. Furthermore, 

we have not considered the case of time truncation and censoring, nor have we addressed the issue 

of choosing optimal sample sizes. However, all of the above considerations can in principle be 

undertaken - the only limitation being a question of details. All the same, our approach does bring 

out matters that are not otherwise intuitive and the special cases give us many clues about what 

to expect and what direction to proceed when considering the more general scenarios. 

Typically, in linear model with k parameters, designs concentrate on k points. This is not 

generally true in nonlinear situations (Chaloner and Larntz, 1986). In our case we have k = 2. 

Stone (1959) considers the number of points required to maximise Shannon information when 

estimation is the aim. The extension to the predictive case requires future research. 

APPENDIX 

Suppose that the experimenter is faced with a decision problem for the random variable Yu, 

with realisation, yu.   Let U(yu,d) denote the utility function, where d € D, the decision space. 

15 



Define the information gained. E(I(Y)) through observing the random variable Y by 

E(I(Y)) = EY ( sup EyjYiUiY^d))) -snpEYAU(Yu,d)) . (19) 
\deD I     deD 

If D is the space of probability distributions for prediction at the point Vu and the utility function, 

for reporting probability densities, is the logarthimic function, that is, U(yu, d(-)) = log d(yu), then, 

sup£Vu|y (U(Yu,d)) =  Ip(yu\Y)logp(yu\Y)dyu 
deD J 

and 

sup£Ku (U(Yu,d)) = j p(yu)logp(yu)dyu 
deD J 

Hence the information gain is 

E{I{Y)) = E(YXu) log llfnT 

which is the Shannon information between the posterior predictive density at Yu to the prior 

predictive density at Yu. If estimation under a quadratic loss function is the aim then the criteria 

of maximising information gained becomes that of minimising posterior variance at the point Vu, 

that is criteria (17). 
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